§ 63.772 Test methods, compliance procedures, and compliance demonstrations.
(a) Determination of material VHAP or HAP concentration to determine the applicability of the equipment leak standards under this subpart (§ 63.769). Each piece of ancillary equipment and compressors are presumed to be in VHAP service or in wet gas service unless an owner or operator demonstrates that the piece of equipment is not in VHAP service or in wet gas service.
(1) For a piece of ancillary equipment and compressors to be considered not in VHAP service, it must be determined that the percent VHAP content can be reasonably expected never to exceed 10.0 percent by weight. For the purposes of determining the percent VHAP content of the process fluid that is contained in or contacts a piece of ancillary equipment or compressor, you shall use the method in either paragraph (a)(1)(i) or paragraph (a)(1)(ii) of this section.
(i) Method 18 of 40 CFR part 60, appendix A, or
(ii) ASTM D6420–99 (2004), Standard Test Method for Determination of Gaseous Organic Compounds by Direct Interface Gas Chromatography-Mass Spectrometry (incorporated by reference—see § 63.14), provided that the provisions of paragraphs (a)(1)(ii)(A) through (D) of this section are followed:
(A) The target compound(s) are those listed in section 1.1 of ASTM D6420–99 (2004);
(B) The target concentration is between 150 parts per billion by volume and 100 parts per million by volume;
(C) For target compound(s) not listed in Table 1.1 of ASTM D6420–99 (2004), but potentially detected by mass spectrometry, the additional system continuing calibration check after each run, as detailed in section 10.5.3 of ASTM D6420–99 (2004), is conducted, met, documented, and submitted with the data report, even if there is no moisture condenser used or the compound is not considered water soluble; and
(D) For target compound(s) not listed in Table 1.1 of ASTM D6420–99 (2004), and not amenable to detection by mass spectrometry, ASTM D6420–99 (2004) may not be used.
(2) For a piece of ancillary equipment and compressors to be considered in wet gas service, it must be determined that it contains or contacts the field gas before the extraction of natural gas liquids.
(b) Determination of glycol dehydration unit flowrate, benzene emissions, or BTEX emissions. The procedures of this paragraph shall be used by an owner or operator to determine glycol dehydration unit natural gas flowrate, benzene emissions, or BTEX emissions.
(1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be made using the procedures of either paragraph (b)(1)(i) or (b)(1)(ii) of this section.
(i) The owner or operator shall install and operate a monitoring instrument that directly measures natural gas flowrate to the glycol dehydration unit with an accuracy of plus or minus 2 percent or better. The owner or operator shall convert annual natural gas flowrate to a daily average by dividing the annual flowrate by the number of days per year the glycol dehydration unit processed natural gas.
(ii) The owner or operator shall document, to the Administrator's satisfaction, the actual annual average natural gas flowrate to the glycol dehydration unit.
(2) The determination of actual average benzene or BTEX emissions from a glycol dehydration unit shall be made using the procedures of either paragraph (b)(2)(i) or (ii) of this section. Emissions shall be determined either uncontrolled, or with federally enforceable controls in place.
(i) The owner or operator shall determine actual average benzene or BTEX emissions using the model GRI–GLYCalc TM, Version 3.0 or higher, and the procedures presented in the associated GRI–GLYCalc TM Technical Reference Manual. Inputs to the model shall be representative of actual operating conditions of the glycol dehydration unit and may be determined using the procedures documented in the Gas Research Institute (GRI) report entitled “Atmospheric Rich/Lean Method for Determining Glycol Dehydrator Emissions” (GRI–95/0368.1); or
(ii) The owner or operator shall determine an average mass rate of benzene or BTEX emissions in kilograms per hour through direct measurement using the methods in § 63.772(a)(1)(i) or (ii), or an alternative method according to § 63.7(f). Annual emissions in kilograms per year shall be determined by multiplying the mass rate by the number of hours the unit is operated per year. This result shall be converted to megagrams per year.
(c) No detectable emissions test procedure. (1) The no detectable emissions test procedure shall be conducted in accordance with Method 21, 40 CFR part 60, appendix A.
(2) The detection instrument shall meet the performance criteria of Method 21, 40 CFR part 60, appendix A, except that the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the average composition of the fluid and not for each individual organic compound in the stream.
(3) The detection instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21, 40 CFR part 60, appendix A.
(4) Calibration gases shall be as follows:
(i) Zero air (less than 10 parts per million by volume hydrocarbon in air); and
(ii) A mixture of methane in air at a concentration less than 10,000 parts per million by volume.
(5) An owner or operator may choose to adjust or not adjust the detection instrument readings to account for the background organic concentration level. If an owner or operator chooses to adjust the instrument readings for the background level, the background level value must be determined according to the procedures in Method 21 of 40 CFR part 60, appendix A.
(6)
(i) Except as provided in paragraph (c)(6)(ii) of this section, the detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the average composition of the process fluid, not each individual volatile organic compound in the stream. For process streams that contain nitrogen, air, or other inert gases that are not organic hazardous air pollutants or volatile organic compounds, the average stream response factor shall be calculated on an inert-free basis.
(ii) If no instrument is available at the facility that will meet the performance criteria specified in paragraph (c)(6)(i) of this section, the instrument readings may be adjusted by multiplying by the average response factor of the process fluid, calculated on an inert-free basis as described in paragraph (c)(6)(i) of this section.
(7) An owner or operator must determine if a potential leak interface operates with no detectable emissions using the applicable procedure specified in paragraph (c)(7)(i) or (c)(7)(ii) of this section.
(i) If an owner or operator chooses not to adjust the detection instrument readings for the background organic concentration level, then the maximum organic concentration value measured by the detection instrument is compared directly to the applicable value for the potential leak interface as specified in paragraph (c)(8) of this section.
(ii) If an owner or operator chooses to adjust the detection instrument readings for the background organic concentration level, the value of the arithmetic difference between the maximum organic concentration value measured by the instrument and the background organic concentration value as determined in paragraph (c)(5) of this section is compared with the applicable value for the potential leak interface as specified in paragraph (c)(8) of this section.
(8) A potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (c)(7) of this section, is less than 500 parts per million by volume.
(d) Test procedures and compliance demonstrations for small glycol dehydration units. This paragraph applies to the test procedures for small dehydration units.
(1) If the owner or operator is using a control device to comply with the emission limit in § 63.765(b)(1)(iii), the requirements of paragraph (e) of this section apply. Compliance is demonstrated using the methods specified in paragraph (f) of this section.
(2) If no control device is used to comply with the emission limit in § 63.765(b)(1)(iii), the owner or operator must determine the glycol dehydration unit BTEX emissions as specified in paragraphs (d)(2)(i) through (iii) of this section. Compliance is demonstrated if the BTEX emissions determined as specified in paragraphs (d)(2)(i) through (iii) are less than the emission limit calculated using the equation in § 63.765(b)(1)(iii).
(i) Method 1 or 1A, 40 CFR part 60, appendix A, as appropriate, shall be used for selection of the sampling sites at the outlet of the glycol dehydration unit process vent. Any references to particulate mentioned in Methods 1 and 1A do not apply to this section.
(ii) The gas volumetric flowrate shall be determined using Method 2, 2A, 2C, or 2D, 40 CFR part 60, appendix A, as appropriate.
(iii) The BTEX emissions from the outlet of the glycol dehydration unit process vent shall be determined using the procedures specified in paragraph (e)(3)(v) of this section. As an alternative, the mass rate of BTEX at the outlet of the glycol dehydration unit process vent may be calculated using the model GRI–GLYCalc TM, Version 3.0 or higher, and the procedures presented in the associated GRI–GLYCalc TM Technical Reference Manual. Inputs to the model shall be representative of actual operating conditions of the glycol dehydration unit and shall be determined using the procedures documented in the Gas Research Institute (GRI) report entitled “Atmospheric Rich/Lean Method for Determining Glycol Dehydrator Emissions” (GRI–95/0368.1). When the BTEX mass rate is calculated for glycol dehydration units using the model GRI–GLYCalc TM, all BTEX measured by Method 18, 40 CFR part 60, appendix A, shall be summed.
(e) Control device performance test procedures. This paragraph applies to the performance testing of control devices. The owners or operators shall demonstrate that a control device achieves the performance requirements of § 63.771(d)(1), (e)(3)(ii) or (f)(1) using a performance test as specified in paragraph (e)(3) of this section. Owners or operators using a condenser have the option to use a design analysis as specified in paragraph (e)(4) of this section. The owner or operator may elect to use the alternative procedures in paragraph (e)(5) of this section for performance testing of a condenser used to control emissions from a glycol dehydration unit process vent. Flares shall meet the provisions in paragraph (e)(2) of this section. As an alternative to conducting a performance test under this section for combustion control devices, a control device that can be demonstrated to meet the performance requirements of § 63.771(d)(1), (e)(3)(ii) or (f)(1) through a performance test conducted by the manufacturer, as specified in paragraph (h) of this section, can be used.